Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Care ; 27(1): 110, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2263778

ABSTRACT

PURPOSE: Methylene blue (MB) has been tested as a rescue therapy for patients with refractory septic shock. However, there is a lack of evidence on MB as an adjuvant therapy, its' optimal timing, dosing and safety profile. We aimed to assess whether early adjunctive MB can reduce time to vasopressor discontinuation in patients with septic shock. METHODS: In this single-center randomized controlled trial, we assigned patients with septic shock according to Sepsis-3 criteria to MB or placebo. Primary outcome was time to vasopressor discontinuation at 28 days. Secondary outcomes included vasopressor-free days at 28 days, days on mechanical ventilator, length of stay in ICU and hospital, and mortality at 28 days. RESULTS: Among 91 randomized patients, forty-five were assigned to MB and 46 to placebo. The MB group had a shorter time to vasopressor discontinuation (69 h [IQR 59-83] vs 94 h [IQR 74-141]; p < 0.001), one more day of vasopressor-free days at day 28 (p = 0.008), a shorter ICU length of stay by 1.5 days (p = 0.039) and shorter hospital length of stay by 2.7 days (p = 0.027) compared to patients in the control group. Days on mechanical ventilator and mortality were similar. There were no serious adverse effects related to MB administration. CONCLUSION: In patients with septic shock, MB initiated within 24 h reduced time to vasopressor discontinuation and increased vasopressor-free days at 28 days. It also reduced length of stay in ICU and hospital without adverse effects. Our study supports further research regarding MB in larger randomized clinical trials. Trial registration ClinicalTrials.gov registration number NCT04446871 , June 25, 2020, retrospectively registered.


Subject(s)
Sepsis , Shock, Septic , Humans , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Vasoconstrictor Agents/therapeutic use , Sepsis/complications
4.
Crit Care ; 26(1): 84, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1765461

ABSTRACT

BACKGROUND: Awake prone positioning (APP) improves oxygenation in coronavirus disease (COVID-19) patients and, when successful, may decrease the risk of intubation. However, factors associated with APP success remain unknown. In this secondary analysis, we aimed to assess whether APP can reduce intubation rate in patients with COVID-19 and to focus on the factors associated with success. METHODS: In this multicenter randomized controlled trial, conducted in three high-acuity units, we randomly assigned patients with COVID-19-induced acute hypoxemic respiratory failure (AHRF) requiring high-flow nasal cannula (HFNC) oxygen to APP or standard care. Primary outcome was intubation rate at 28 days. Multivariate analyses were performed to identify the predictors associated to treatment success (survival without intubation). RESULTS: Among 430 patients randomized, 216 were assigned to APP and 214 to standard care. The APP group had a lower intubation rate (30% vs 43%, relative risk [RR] 0.70; CI95 0.54-0.90, P = 0.006) and shorter hospital length of stay (11 interquartile range [IQR, 9-14] vs 13 [IQR, 10-17] days, P = 0.001). A respiratory rate ≤ 25 bpm at enrollment, an increase in ROX index > 1.25 after first APP session, APP duration > 8 h/day, and a decrease in lung ultrasound score ≥ 2 within the first 3 days were significantly associated with treatment success for APP. CONCLUSION: In patients with COVID-19-induced AHRF treated by HFNC, APP reduced intubation rate and improved treatment success. A longer APP duration is associated with APP success, while the increase in ROX index and decrease in lung ultrasound score after APP can also help identify patients most likely to benefit. TRIAL REGISTRATION: This study was retrospectively registered in ClinicalTrials.gov at July 20, 2021. Identification number NCT04477655. https://clinicaltrials.gov/ct2/show/NCT04477655?term=PRO-CARF&draw=2&rank=1.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Cannula , Humans , Prone Position , Respiratory Insufficiency/complications , Respiratory Insufficiency/therapy , Wakefulness
6.
Crit Care Med ; 50(4): 586-594, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1764674

ABSTRACT

OBJECTIVES: Airway pressure release ventilation is a ventilatory mode characterized by a mandatory inverse inspiratory:expiratory ratio with a very short expiratory phase, aimed to avoid derecruitment and allow spontaneous breathing. Recent basic and clinical evidence suggests that this mode could be associated with improved outcomes in patients with acute respiratory distress syndrome. The aim of this study was to compare the outcomes between airway pressure release ventilation and traditional ventilation targeting low tidal volume, in patients with severe coronavirus disease 2019. DESIGN: Single-center randomized controlled trial. SETTING: ICU of a Mexican referral center dedicated to care of patients with confirmed diagnosis of coronavirus disease 2019. PATIENTS: Ninety adult intubated patients with acute respiratory distress syndrome associated with severe coronavirus disease 2019. INTERVENTIONS: Within 48 hours after intubation, patients were randomized to either receive ventilatory management with airway pressure release ventilation or continue low tidal volume ventilation. MEASUREMENTS AND MAIN RESULTS: Forty-five patients in airway pressure release ventilation group and 45 in the low tidal volume group were included. Ventilator-free days were 3.7 (0-15) and 5.2 (0-19) in the airway pressure release ventilation and low tidal volume groups, respectively (p = 0.28). During the first 7 days, patients in airway pressure release ventilation had a higher Pao2/Fio2 (mean difference, 26 [95%CI, 13-38]; p < 0.001) and static compliance (mean difference, 3.7 mL/cm H2O [95% CI, 0.2-7.2]; p = 0.03), higher mean airway pressure (mean difference, 3.1 cm H2O [95% CI, 2.1-4.1]; p < 0.001), and higher tidal volume (mean difference, 0.76 mL/kg/predicted body weight [95% CI, 0.5-1.0]; p < 0.001). More patients in airway pressure release ventilation had transient severe hypercapnia, defined as an elevation of Pco2 at greater than or equal to 55 along with a pH less than 7.15 (42% vs 15%; p = 0.009); other outcomes were similar. Overall mortality was 69%, with no difference between the groups (78% in airway pressure release ventilation vs 60% in low tidal volume; p = 0.07). CONCLUSIONS: In conclusion, when compared with low tidal volume, airway pressure release ventilation was not associated with more ventilator-free days or improvement in other relevant outcomes in patients with severe coronavirus disease 2019.


Subject(s)
COVID-19/complications , Continuous Positive Airway Pressure , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Adult , Aged , COVID-19/mortality , Female , Humans , Male , Mexico , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Tidal Volume
7.
Trials ; 21(1): 940, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-940029

ABSTRACT

OBJECTIVES: To assess the effect of prone positioning therapy on intubation rate in awake patients with COVID-19 and acute respiratory failure. TRIAL DESIGN: This is a two-center parallel group, superiority, randomized (1:1 allocation ratio) controlled trial. PARTICIPANTS: All patients admitted to the Hospital Civil de Guadalajara and Hospital General de Occidente in Mexico for COVID-19 associated acute respiratory failure and in need of supplementary oxygen through high-flow nasal cannula are screened for eligibility. INCLUSION CRITERIA: all adult patients admitted to the COVID-19 unit who test positive for COVID-19 by PCR-test and in need for oxygen are eligible for inclusion. Randomization starts upon identification of requirement of a fraction of inspired oxygen ≥30% for an oxygen capillary saturation of ≥90% Exclusion criteria: less than 18 years-old, pregnancy, patients with immediate need of invasive mechanical ventilation (altered mental status, fatigue), vasopressor requirement to maintain median arterial pressure >65 mmHg, contraindications for prone positioning therapy (recent abdominal or thoracic surgery or trauma, facial, pelvic or spine fracture, untreated pneumothorax, do-not-resuscitate or do-not-intubate order, refusal or inability of the patient to enroll in the study. INTERVENTION AND COMPARATOR: Patients of the intervention group will be asked to remain in a prone position throughout the day as long as possible, with breaks according to tolerance. Pillows will be offered for maximizing comfort at chest, pelvis and knees. Monitoring of vital signs will not be suspended. Inspired fraction of oxygen will be titrated to maintain a capillary saturation of 92%-95%. For patients in the control group, prone positioning will be allowed as a rescue therapy. Staff intensivists will monitor the patient's status in both groups on a 24/7 basis. All other treatment will be unchanged and left to the attending physicians. MAIN OUTCOMES: Endotracheal intubation rate for mechanical ventilation at 28 days. RANDOMISATION: Patients will be randomly allocated to either prone positioning or control group at 1:1 ratio. Such randomization will be computer generated and stratified by center with permuted blocks and length of 4. BLINDING (MASKING): Due to logistical reasons, only principal investigators and the data analyst will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): With an intubation rate of 60% according to recent reports from some American centers, and assuming a decrease to 40% to be clinically relevant, we calculated a total of 96 patients per group, for a beta error of 0.2, and alpha of 0.5. Therefore, we plan to recruit 200 patients, accounting for minimal losses to follow up, with 100 non-intubated patients in the prone position group and a 100 in the control group. TRIAL STATUS: The local registration number is 048-20, with the protocol version number 2.0. The date of approval is 3rd May 2020. Recruitment started on 3rd May and is expected to end in December 2020. TRIAL REGISTRATION: The protocol was retrospectively registered under the title: "Prone Positioning in Non-intubated Patients With COVID-19 Associated Acute Respiratory Failure. The PRO-CARF trial" in ClinicalTrials.gov with the registration number: NCT04477655. Registered on 20 July 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Coronavirus Infections/complications , Intubation, Intratracheal/instrumentation , Oxygen/therapeutic use , Pneumonia, Viral/complications , Prone Position/physiology , Respiratory Insufficiency/etiology , Acute Disease , Adult , Betacoronavirus/genetics , COVID-19 , Cannula/adverse effects , Cannula/supply & distribution , Case-Control Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Mexico/epidemiology , Oxygen/administration & dosage , Oxygen/blood , Oxygen/supply & distribution , Pandemics , Patient Positioning/methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL